3.2.79 \(\int \sin (a+\frac {b}{(c+d x)^2}) \, dx\) [179]

Optimal. Leaf size=105 \[ -\frac {\sqrt {b} \sqrt {2 \pi } \cos (a) C\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right )}{d}+\frac {\sqrt {b} \sqrt {2 \pi } S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right ) \sin (a)}{d}+\frac {(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d} \]

[Out]

(d*x+c)*sin(a+b/(d*x+c)^2)/d-cos(a)*FresnelC(b^(1/2)*2^(1/2)/Pi^(1/2)/(d*x+c))*b^(1/2)*2^(1/2)*Pi^(1/2)/d+Fres
nelS(b^(1/2)*2^(1/2)/Pi^(1/2)/(d*x+c))*sin(a)*b^(1/2)*2^(1/2)*Pi^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {3440, 3468, 3435, 3433, 3432} \begin {gather*} -\frac {\sqrt {2 \pi } \sqrt {b} \cos (a) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {b}}{c+d x}\right )}{d}+\frac {\sqrt {2 \pi } \sqrt {b} \sin (a) S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right )}{d}+\frac {(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sin[a + b/(c + d*x)^2],x]

[Out]

-((Sqrt[b]*Sqrt[2*Pi]*Cos[a]*FresnelC[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)])/d) + (Sqrt[b]*Sqrt[2*Pi]*FresnelS[(Sqrt
[b]*Sqrt[2/Pi])/(c + d*x)]*Sin[a])/d + ((c + d*x)*Sin[a + b/(c + d*x)^2])/d

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3435

Int[Cos[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Cos[c], Int[Cos[d*(e + f*x)^2], x], x] - Dist[
Sin[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 3440

Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Dist[-f^(-1), Subst[Int[(
a + b*Sin[c + d/x^n])^p/x^2, x], x, 1/(e + f*x)], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[n,
0] && EqQ[n, -2]

Rule 3468

Int[((e_.)*(x_))^(m_)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[(e*x)^(m + 1)*(Sin[c + d*x^n]/(e*(m + 1)
)), x] - Dist[d*(n/(e^n*(m + 1))), Int[(e*x)^(m + n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ[n,
0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \sin \left (a+\frac {b}{(c+d x)^2}\right ) \, dx &=-\frac {\text {Subst}\left (\int \frac {\sin \left (a+b x^2\right )}{x^2} \, dx,x,\frac {1}{c+d x}\right )}{d}\\ &=\frac {(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d}-\frac {(2 b) \text {Subst}\left (\int \cos \left (a+b x^2\right ) \, dx,x,\frac {1}{c+d x}\right )}{d}\\ &=\frac {(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d}-\frac {(2 b \cos (a)) \text {Subst}\left (\int \cos \left (b x^2\right ) \, dx,x,\frac {1}{c+d x}\right )}{d}+\frac {(2 b \sin (a)) \text {Subst}\left (\int \sin \left (b x^2\right ) \, dx,x,\frac {1}{c+d x}\right )}{d}\\ &=-\frac {\sqrt {b} \sqrt {2 \pi } \cos (a) C\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right )}{d}+\frac {\sqrt {b} \sqrt {2 \pi } S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right ) \sin (a)}{d}+\frac {(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 100, normalized size = 0.95 \begin {gather*} \frac {-\sqrt {b} \sqrt {2 \pi } \cos (a) C\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right )+\sqrt {b} \sqrt {2 \pi } S\left (\frac {\sqrt {b} \sqrt {\frac {2}{\pi }}}{c+d x}\right ) \sin (a)+(c+d x) \sin \left (a+\frac {b}{(c+d x)^2}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b/(c + d*x)^2],x]

[Out]

(-(Sqrt[b]*Sqrt[2*Pi]*Cos[a]*FresnelC[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)]) + Sqrt[b]*Sqrt[2*Pi]*FresnelS[(Sqrt[b]*
Sqrt[2/Pi])/(c + d*x)]*Sin[a] + (c + d*x)*Sin[a + b/(c + d*x)^2])/d

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 80, normalized size = 0.76

method result size
derivativedivides \(-\frac {-\left (d x +c \right ) \sin \left (a +\frac {b}{\left (d x +c \right )^{2}}\right )+\sqrt {b}\, \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (a \right ) \FresnelC \left (\frac {\sqrt {b}\, \sqrt {2}}{\sqrt {\pi }\, \left (d x +c \right )}\right )-\sin \left (a \right ) \mathrm {S}\left (\frac {\sqrt {b}\, \sqrt {2}}{\sqrt {\pi }\, \left (d x +c \right )}\right )\right )}{d}\) \(80\)
default \(-\frac {-\left (d x +c \right ) \sin \left (a +\frac {b}{\left (d x +c \right )^{2}}\right )+\sqrt {b}\, \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (a \right ) \FresnelC \left (\frac {\sqrt {b}\, \sqrt {2}}{\sqrt {\pi }\, \left (d x +c \right )}\right )-\sin \left (a \right ) \mathrm {S}\left (\frac {\sqrt {b}\, \sqrt {2}}{\sqrt {\pi }\, \left (d x +c \right )}\right )\right )}{d}\) \(80\)
risch \(-\frac {b \sqrt {\pi }\, \erf \left (\frac {\sqrt {i b}}{d x +c}\right ) {\mathrm e}^{-i a}}{2 d \sqrt {i b}}-\frac {b \sqrt {\pi }\, \erf \left (\frac {\sqrt {-i b}}{d x +c}\right ) {\mathrm e}^{i a}}{2 d \sqrt {-i b}}-\frac {\left (-d x -c \right ) \sin \left (\frac {a \,d^{2} x^{2}+2 a c d x +a \,c^{2}+b}{\left (d x +c \right )^{2}}\right )}{d}\) \(115\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b/(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(-(d*x+c)*sin(a+b/(d*x+c)^2)+b^(1/2)*2^(1/2)*Pi^(1/2)*(cos(a)*FresnelC(b^(1/2)*2^(1/2)/Pi^(1/2)/(d*x+c))-
sin(a)*FresnelS(b^(1/2)*2^(1/2)/Pi^(1/2)/(d*x+c))))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^2),x, algorithm="maxima")

[Out]

b*d*integrate(x*cos((a*d^2*x^2 + 2*a*c*d*x + a*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2))/(d^3*x^3 + 3*c*d^2*x^2 + 3*
c^2*d*x + c^3), x) + b*d*integrate(x*cos((a*d^2*x^2 + 2*a*c*d*x + a*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2))/((d^3*
x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)*cos((a*d^2*x^2 + 2*a*c*d*x + a*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2))^2 + (d
^3*x^3 + 3*c*d^2*x^2 + 3*c^2*d*x + c^3)*sin((a*d^2*x^2 + 2*a*c*d*x + a*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2))^2),
 x) + x*sin((a*d^2*x^2 + 2*a*c*d*x + a*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2))

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 137, normalized size = 1.30 \begin {gather*} -\frac {\sqrt {2} \pi d \sqrt {\frac {b}{\pi d^{2}}} \cos \left (a\right ) \operatorname {C}\left (\frac {\sqrt {2} d \sqrt {\frac {b}{\pi d^{2}}}}{d x + c}\right ) - \sqrt {2} \pi d \sqrt {\frac {b}{\pi d^{2}}} \operatorname {S}\left (\frac {\sqrt {2} d \sqrt {\frac {b}{\pi d^{2}}}}{d x + c}\right ) \sin \left (a\right ) - {\left (d x + c\right )} \sin \left (\frac {a d^{2} x^{2} + 2 \, a c d x + a c^{2} + b}{d^{2} x^{2} + 2 \, c d x + c^{2}}\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^2),x, algorithm="fricas")

[Out]

-(sqrt(2)*pi*d*sqrt(b/(pi*d^2))*cos(a)*fresnel_cos(sqrt(2)*d*sqrt(b/(pi*d^2))/(d*x + c)) - sqrt(2)*pi*d*sqrt(b
/(pi*d^2))*fresnel_sin(sqrt(2)*d*sqrt(b/(pi*d^2))/(d*x + c))*sin(a) - (d*x + c)*sin((a*d^2*x^2 + 2*a*c*d*x + a
*c^2 + b)/(d^2*x^2 + 2*c*d*x + c^2)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sin {\left (a + \frac {b}{\left (c + d x\right )^{2}} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)**2),x)

[Out]

Integral(sin(a + b/(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^2),x, algorithm="giac")

[Out]

integrate(sin(a + b/(d*x + c)^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sin \left (a+\frac {b}{{\left (c+d\,x\right )}^2}\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b/(c + d*x)^2),x)

[Out]

int(sin(a + b/(c + d*x)^2), x)

________________________________________________________________________________________